Abstract

Considering core thickness is important issue to performance of exterior frame and core hybrid structure in high-rise buildings, seismic response analysis is conducted by response spectrum method for finite element models with different core thickness. The optimization design of core thickness of hybrid Structures on the basis of the seismic response is studied, the core thicknesses are chosen as design variables, the objective function about core volume is adopted, some specification requirements such as deformation, the ratio of lateral stiffness to gravity, storey shear to gravity, storey shear of exterior frame, axial compression ratio of column and wall limb, bearing capacity of structural member and core construction are regarded as restricting conditions, the optimal mathematical model is established for reflecting integrity dynamic properties of hybrid structure. The ANSYS software is used for optimizing tool, the hybrid structures optimization design are made through different initial values for verifying convergence of optimization method, the optimal result show that the performances of hybrid structure are improved, the internal forces are reduced and the ratios of inner force born by exterior frames are increased in the optimal scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call