Abstract

The well-established practice of integrating heat pipes into thermosyphons is recognized for its efficacy in achieving energy savings. This integration facilitates heat transfer and fluid circulation without requiring additional pumps or energy input, resulting in reduced consumption, lowered operational costs, and an overall improvement in system efficiency. This research explores the energy-saving potential of closed-loop thermosyphons, with a specific focus on their integration in latent heat-based heat pipe technologies in industrial settings. The study systematically investigates the influence of thermosyphon orientation on energy efficiency through a combination of experiments and computational fluid dynamics (CFD) simulations. Thereby, it results in superior heat transfer rates in forced convection scenarios. A closed-loop thermosyphon heat exchanger undergoes evaluation in three panel installation configurations relative to the ground, taking into consideration factors including copper diameters, coolants (with or without R410a), and temperature conditions. CFD validation identifies an efficient thermosyphon design—a panel oriented perpendicularly to the ground and filled with R410a refrigerant at 90 °C. It utilizes a 19.05 mm copper tube for forced convection. This optimized design demonstrates a commendable heat transfer rate of 1485 W and a heat transfer coefficient of 1252 W/(m2·K), significantly enhancing thermal process efficiency and resulting in notable energy savings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call