Abstract
AbstractResin‐based composites, now the most prevalent material for restorative dental treatments, are available in a multitude of types. Next‐generation composites are designed to be bio interactive, solving issues such as secondary caries and mechanical failures, thus prolonging the restoration lifespan. To facilitate the discrimination of the bio interactive composite's performance and the identification of the optimal composition, we tested the VIKOR method for multi‐criteria decision‐making analysis. This study encompassed 12 performance parameters and 5 experimental dental composites. We measured density, void content, water sorption, water solubility, polymerization shrinkage, depth of cure, degree of conversion, hardness, compressive strength, and surface roughness as performance parameters, and we tested a conventional BisGMA‐TEGDMA resin blend filled with yttria‐stabilized zirconia (20 wt.%) and tricalcium phosphate. The alignment between computational methods and MATLAB‐based calculations validated the robustness of the assessment, verifying the significance of the conclusions drawn from this comprehensive analysis. Both methods (ENTROPY‐VIKOR and VIKOR‐MATLAB) ranked TZC0 as the top composite. This research provided a comprehensive understanding of the complex relationship between material composition, performance attributes, and optimization strategies in dental restorative composites, offering valuable insights for future advancements in restorative dentistry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have