Abstract

The principles of productive active and semi-active civil and infrastructure engineering structural control date back 40 years and significant progress has been recorded in those four decades. Smart structures typically have some control systems that enable them to deal with perturbations. The active vibration management techniques have been applied numerically and experimentally in order to reduce the vibrational levels of lightweight economic composite structures. Smart composite beams and plates have been produced and tested with surface-based piezoelectric sensors and actuators. It has been found that an effective model of smart composite plates can predict the dynamic characteristics. Utilizing Genetic Algorithm (GA) was designed and implemented. Two regression model as root mean square (RMSE) and determination coefficient (R2) were used. The first and second bending modes are operated effectively by a beam, and simultaneous vibration levels are significantly reduced for the conductive plates by the simultaneous operation of the bending and twisting modes. Vibration management is realized by using efficient control. GA could show better performance for managing linear feedback laws under given assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.