Abstract

Block stacking storage is an inexpensive storage system widely used in manufacturing systems where pallets of stock keeping units (SKUs) are stored in a warehouse at the finite production rates. However, determining the optimal lane depth that maximises space utilisation under a finite production rate constraint has not been adequately addressed in the literature and is an open problem. In this research, we propose mathematical models to obtain the optimal lane depth for single and multiple SKUs where the pallet production rates are finite. A simulation model is used to evaluate performance of the proposed models under stochastic uncertainty in the major production parameters and the demand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call