Abstract
Crude oil blending is an important step for the operation of crude distillation systems in the refinery to improve the yield and profitability of the products. The product’s yield and quality are strongly dependent on the properties of the crude oil. However, the products of crude distillation units, especially the vacuum distillation unit (VDU) need to satisfy the yield and quality requirements of the downstream process units in the refinery. Otherwise, the performance of downstream processes will be affected, and loss of profitability in the refinery. Hence, it is important to optimise the performance of the VDU to ensure the optimum operation of VDU. This work covers the process simulation of VDU, surrogate modelling and mathematical optimisation model. The objective of the developed optimisation model is to determine an optimal for maximum high vacuum gas oil (HVGO) yield and minimum total annualised cost (TAC) respectively. To do this, crude oil blending ratio, column temperature, column pressure, stripping steam flowrate, pump-around flowrate in the VDU are optimised. Based on the optimised result, the heavy-light crude blend achieves higher HVGO yield and lower TAC as compared to the heavy-medium crude blend and heavy-medium-light crude blend. The optimised results can provide insight into the optimal process conditions of VDU for the refiners. With this insight, effective operating strategies can be developed to overcome the limitations present in real VDU operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.