Abstract

The significance of microgrid systems has grown considerably. This research proposes an innovative approach to manage uncertainty in microgrids by employing energy storage systems as the exclusive flexible resource. To address this challenge, a mathematical problem is formulated as a two-stage stochastic programming model, considering two uncertainties in the microgrid: wind and photovoltaic production. The microgrid system encompasses multiple components, including a diesel generator, a microturbine, wind and photovoltaic power generation, an energy storage system, and the microgrid’s demand. Notably, the microgrid exhibits two distinctive features: (i) the complete integration of wind and photovoltaic production, and (ii) the utilisation of an energy storage system as the sole flexible resource. The objective is to minimise the expected cost of the microgrid system while determining the optimal capacity of the energy storage system to meet the energy balance constraint. This constraint takes into account the varying scenarios of wind and photovoltaic production. The decisions are taking for a duration of 8760 h, a long-term evaluation. A case study is presented for actual data from Greece and the results show high volatility of the renewable energy sources implies higher energy storage system capacity as a sole flexible source for avoiding renewable curtailment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.