Abstract

BackgroundImmunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer.MethodsPlasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 μg plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNγ. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice.ResultsThe phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses, preventing tumour occurrence in 54% of treated animals. Vaccination with phPSA resulted in anti-hPSA Abs production and a significant production of IFNγ was observed in immunised animals (p < 0.05). Immune responses were tumour specific and were transferable in adoptive T cell transfer experiments.ConclusionsThis phPSA plasmid electroporation vaccination strategy can effectively activate tumour specific immune responses. Optimisation of the approach indicated that a four-dose regimen provided highest tumour protection. In vivo electroporation mediated vaccination is a safe and effective modality for the treatment of prostate cancer and has a potential to be used as a neo-adjuvant or adjuvant therapy.

Highlights

  • Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms

  • We investigated the utilisation of a human prostate specific antigen (PSA) expressing plasmid in a murine model of prostate cancer

  • In vivo growth of the wild TRAMPC1 and TRAMPC1/ human PSA (hPSA) tumours in C57 BL/6 was comparable. This showed that the presence of the human antigen in the TRAMPC1 did not cause significant effects on in vivo tumour growth, validating the suitability of the TRAMPC1/hPSA model

Read more

Summary

Introduction

Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. Healthy individuals are known to have some immune inhibitory effects on prostate cancer growth (at least early phase of the disease), while progressive tumour development is a result of tumour escape from the immune system. Immunological therapies may overcome these escape pathways and can potentially play an effective role in the management of prostate cancer in isolation or in conjunction with available therapies. Patients with advanced prostate cancer are known to have defective cell mediated immunity [7]. Both antibody and CD8+ Tcell immune responses have been reported in patients with advanced prostate cancer [8,9,10]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.