Abstract

This paper is focused on the development and implementation of an innovative optimisation algorithm for the wrinkling and thinning control during the hydroforming of complex metallic parts. A straightforward numerical algorithm for simultaneous tracking and evaluation of the initiation of wrinkling/thinning defects was implemented, together with a numerical simulation program based on the Finite Element Method (FEM). After undesirable wrinkling/thinning patterns are identified during FEM simulation, the developed optimisation procedure (called Hybrid Differential Evolution Particle Swarm Optimisation - HDEPSO) is responsible to automatically correct the process input parameters, in order to achieve the successful forming of the desired part. In the end, the combined procedure (optimisation methodology + FEM) proved to be able to lead to a suitable numerical simulation and design tool for industrial hydroformed metallic tubular parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.