Abstract

Wharton's Jelly (WJ)-derived Mesenchymal Stromal Cells (MSC) are currently in the spotlight for the development of innovative MSC-based therapies due to their ease of sourcing, high proliferation capacity and improved immunopotency over MSC from other tissue sources. However, the short time window for derivation from donated fresh umbilical cord (UC) tissue fragments does not allow to consider biological features of the donor beyond serological safety testing. This limits the scope of MSC banking to rapid, prospective derivation of MSC, WJ lines without considering biological and genetic characteristics of the donor that may influence their suitability for clinical use (e.g. HLA type, inherited gene variants). In the present study, we describe a simple, efficient and reproducible approach for the cryopreservation of UC tissue fragments, compatible with established workflows in existing public frameworks for cord blood and tissue collection while guaranteeing pharmaceutical grade of starting materials for further processing under GMP standards. Herein we demonstrated the feasibility of time and cost-saving methods for cryopreservation of unprocessed UC tissue fragments directly at reception of the donated tissues using 10% Me2SO-based cryosolution and a commercial clinical-grade defined cryopreservation medium (Cryostor®), showing the preservation of all Critical Quality Attributes in terms of identity, potency and kinetic parameters. In summary, our study provides evidence that cryopreservation of large unprocessed UC tissue fragments (5–13.5 cm) supports subsequent progenitor cell isolation and derivation of MSC,WJ, preserving their viability, identity, proliferation rates and potency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call