Abstract

The wide use of human multipotent mesenchymal stromal cells (MSCs) in clinical trials requires a full-scale safety and identity evaluation of the cellular product and subsequent transportation between research/medical centres. This necessitates the prolonged hypothermic storage of cells prior to application. The development of new, nontoxic, and efficient media, providing high viability and well-preserved therapeutic properties of MSCs during hypothermic storage, is highly relevant for a successful clinical outcome. In this study, a simple and effective trehalose-based solution was developed for the hypothermic storage of human bone marrow MSC suspensions for further clinical applications. Human bone marrow MSCs were stored at 4°C for 24, 48, and 72 hrs in the developed buffered trehalose solution and compared to several research and clinical grade media: Plasma-Lyte® 148, HypoThermosol® FRS, and Ringer's solution. After the storage, the preservation of viability, identity, and therapeutically associated properties of MSCs were assessed. The hypothermic storage of MSCs in the new buffered trehalose solution provided significantly higher MSC recovery rates and ability of cells for attachment and further proliferation, compared to Plasma-Lyte® 148 and Ringer's solution, and was comparable to research-grade HypoThermosol® FRS. There were no differences in the immunophenotype, osteogenic, and adipogenic differentiation and the immunomodulatory properties of MSCs after 72 hrs of cold storage in these solutions. The obtained results together with the confirmed therapeutic properties of trehalose previously described provide sufficient evidence that the developed trehalose medium can be applied as a low-cost and efficient solution for the hypothermic storage of MSC suspensions, with a high potential for translation into clinical practice.

Highlights

  • Multipotent mesenchymal stromal cells (MSCs) are currently the most widely studied and applied cell type in regenerative medicine, with more than 700 registered clinical trials conducted worldwide

  • We propose a simple and effective trehalosebased solution for the hypothermic storage of human bone marrow MSC suspensions

  • To analyse whether the hypothermic storage conditions would affect the identity of MSCs, we studied the specific immunophenotype (Table 1) of MSCs after cold preservation in different conditions

Read more

Summary

Introduction

Multipotent mesenchymal stromal cells (MSCs) are currently the most widely studied and applied cell type in regenerative medicine, with more than 700 registered clinical trials conducted worldwide (https://clinicaltrials.gov). The clinical grade manufacturing process of MSCs comprises a number of regulated steps, aimed at assuring the safety and identity of the final cellular product. Many studies show different aspects of the clinical grade manufacturing of MSCs [3, 4]. The application of a chemically defined culture media, xeno-free supplements for in vitro expansion, and banking of MSCs are thoroughly discussed elsewhere [5, 6]. These studies provide key information for optimising the cell manufacturing process, to obtain safe and efficient cellular therapies

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call