Abstract
AbstractReinforced cables are usually installed on flexible airship structures to enhance their load-bearing capability. However, reinforced cables also increase the total weight of the airship. In order to find a balance between large loading-bear capability and light weight, a multi-objective optimisation scheme based on the genetic algorithm NSGA-II is put forward for the reinforced cable distribution on the airship. Firstly, different cable distribution schemes are presented according to engineering experience and the optimal one is determined by load analysis. Then, the CAE method and optimisation analysis are combined to achieve structure design optimisation. The parametric model of the airship structure with reinforced cables is established by ABAQUS secondary development and the load analysis is carried out. Parameter passing and optimisation algorithm are operated by Isight software and the optimisation analysis is conducted based on the NSGA-II algorithm. Finally, we draw some conclusions of the rules of optimised reinforcing cable distribution. The work of this paper has crucial engineering significance for improving performance of the airship structure design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.