Abstract

In many dynamic systems such as robot and aerospace areas, flexible structures have been extremely employed to satisfy various requirements for large scale, light weight and high speed in dynamic motion. However, these flexible structures are readily susceptible to the internal/external disturbances (or excitations). Therefore, vibration control schemes should be exerted to achieve high performance and stability of flexible structure systems. Recently, in order to successfully achieve vibration control for flexible structures smart materials such as piezoelectric materials [1-2], shape memory alloys [3-4], electrorheological (ER) fluids [5-6] and magnetorheological (MR) fluids [7] are being widely utilized. Among these smart materials, ER or MR fluid exhibits reversible changes in material characteristics when sub‐ jected to electric or magnetic field. The vibration control of flexible structures using the smart ER or MR fluid can be achieved from two different methods. The first approach is to replace conventional viscoelastic materials by the ER or MR fluid. This method is very effec‐ tive for shape control of flexible structures such as plate [5]. The second approach is to de‐ vise dampers or mounts and apply to vibration control of the flexible structures. This method is very useful to isolate vibration of large structural systems subjected to external excitations [6-7]. In this work, a new type of MR mount is proposed and applied to vibration control of the flexible structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call