Abstract
This paper is concerned with optimality and stability analysis of a family of ensemble Kalman filter (EnKF) algorithms. EnKF is commonly used as an alternative to the Kalman filter for high-dimensional problems, where storing the variance matrix is computationally expensive. The algorithm consists of an ensemble of interacting particles driven by a feedback control law. The control law is designed such that, in the linear Gaussian setting and asymptotic limit of infinitely many particles, the mean and variance of the particles follow the exact mean and variance of the Kalman filter. The problem of finding a control law that is exact does not have a unique solution, reminiscent of the problem of finding a transport map between two distributions. A unique control law can be identified by introducing control cost functions, that are motivated by the optimal transportation problem or Schrödinger bridge problem. The objective of this paper is to study the relationship between optimality and long-term stability of a family of exact control laws. Remarkably, the control law that is optimal in the optimal transportation sense leads to an EnKF algorithm that is not stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.