Abstract
This work examines fundamental tradeoffs incurred by a speed scaler seeking to minimize the sum of expected response time and energy use per job. We prove that a popular speed scaler is 2-competitive for this objective and no natural speed scaler can do better. Additionally, we prove that energy-proportional speed scaling works well for both Shortest Remaining Processing Time (SRPT) and Processor Sharing (PS) and we show that under both SRPT and PS, gated-static speed scaling is nearly optimal when the mean workload is known, but that dynamic speed scaling provides robustness against uncertain workloads. Finally, we prove that speed scaling magnifies unfairness under SRPT but that PS remains fair under speed scaling. These results show that these speed scalers can achieve any two, but only two, of optimality, fairness, and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.