Abstract

Can the popular shortest remaining processing time (SRPT) algorithm achieve a constant competitive ratio on multiple servers when server speeds are adjustable (speed scaling) with respect to the flow time plus energy consumption metric? This question has remained open for a while, where a negative result in the absence of speed scaling is well known. The main result of this paper is to show that multi-server SRPT with speed scaling can be constant competitive, with a competitive ratio that only depends on the power-usage function of the servers, but not on the number of jobs/servers or the job sizes (unlike when speed scaling is not allowed). When all job sizes are unity, we show that round-robin routing is optimal and can achieve the same competitive ratio as the best known algorithm for the single server problem. Finally, we show that a class of greedy dispatch policies, including policies that route to the least loaded or the shortest queue, do not admit a constant competitive ratio. When job arrivals are stochastic, with Poisson arrivals and i.i.d. job sizes, we show that random routing and a simple gated-static speed scaling algorithm achieves a constant competitive ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.