Abstract

We study the time optimal control problem with a general target S for a class of differential inclusions that satisfy mild smoothness and controllability assumptions. In particular, we do not require Petrov's condition at the boundary of S. Consequently, the minimum time function T(⋅) fails to be locally Lipschitz—never mind semiconcave—near S. Instead of such a regularity, we use an exterior sphere condition for the hypograph of T(⋅) to develop the analysis. In this way, we obtain dual arc inclusions which we apply to show the constancy of the Hamiltonian along optimal trajectories and other optimality conditions in Hamiltonian form. We also prove an upper bound for the Hausdorff measure of the set of all non-Lipschitz points of T(⋅) which implies that the minimum time function is of special bounded variation (SBV).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.