Abstract

This paper concerns state constrained optimal control problems, in which the dynamic constraint takes the form of a differential inclusion. If the differential inclusion does not depend on time, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, is independent of time. If the differential inclusion is Lipschitz continuous, then the Hamitonian, evaluated along the optimal state trajectory and the co-state trajectory, is Lipschitz continuous. These two well-known results are examples of the following principle: the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, inherits the regularity properties of the differential inclusion, regarding its time dependence. We show that this principle also applies to another kind of regularity: if the differential inclusion has bounded variation with respect to time, then the Hamiltonian, evaluated along the optimal state trajectory and the co-state trajectory, has bounded variation. Two applications of these newly found properties are demonstrated. One is to derive improved conditions which guarantee the nondegeneracy of necessary conditions of optimality, in the form of a Hamiltonian inclusion. The other application is to derive new, less restrictive, conditions under which minimizers in the calculus of variations have bounded slope. The analysis is based on a new, local, concept of differential inclusions that have bounded variation with respect to the time variable, in which conditions are imposed on the multifunction involved, only in a neighborhood of a given state trajectory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.