Abstract

Lasserre’s hierarchy is a sequence of semidefinite relaxations for solving polynomial optimization problems globally. This paper studies the relationship between optimality conditions in nonlinear programming theory and finite convergence of Lasserre’s hierarchy. Our main results are: (i) Lasserre’s hierarchy has finite convergence when the constraint qualification, strict complementarity and second order sufficiency conditions hold at every global minimizer, under the standard archimedean condition; the proof uses a result of Marshall on boundary hessian conditions. (ii) These optimality conditions are all satisfied at every local minimizer if a finite set of polynomials, which are in the coefficients of input polynomials, do not vanish at the input data (i.e., they hold in a Zariski open set). This implies that, under archimedeanness, Lasserre’s hierarchy has finite convergence generically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.