Abstract

We consider the source-channel separation architecture for lossy source coding in communication networks. It is shown that the separation approach is optimal in two general scenarios, and is approximately optimal in a third scenario. The two scenarios for which separation is optimal complement each other: the first is when the memoryless sources at source nodes are arbitrarily correlated, each of which is to be reconstructed at possibly multiple destinations within certain distortions, but the channels in this network are synchronized, orthogonal and memoryless point-to-point channels; the second is when the memoryless sources are mutually independent, each of which is to be reconstructed only at one destination within a certain distortion, but the channels are general, including multi-user channels such as multiple access, broadcast, interference and relay channels, possibly with feedback. The third scenario, for which we demonstrate approximate optimality of source-channel separation, generalizes the second scenario by allowing each source to be reconstructed at multiple destinations with different distortions. For this case, the loss from optimality by using the separation approach can be upper-bounded when a "difference" distortion measure is taken, and in the special case of quadratic distortion measure, this leads to universal constant bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.