Abstract
Currently, cancer is one of the most serious problems facing humanity, and one of the most widely used and versatile diagnostic techniques is magnetic resonance imaging (MRI), which may require an injection of contrast agents (CAs). CAs are paramagnetic compounds capable of increasing the relaxation rate of water protons, thereby obtaining clearer MRI examination images. In this work, the solvent and thermal effects on spectroscopic parameters of [Fe(H2O)6]2+, [Mn(H2O)6]2+, [Gd(H2O)8]3+, and γ-Fe2O3, coordinated to explicit water molecules, were studied in light of the classical and quantum methods. For the classical part of the simulation, a new method of selection of configurations from the molecular dynamics simulations, denominated optimal wavelet signal compression algorithm (OWSCA), is presented. Our findings indicate that OWSCA leads to a good agreement with the experimental available data and the thermal effects greatly influence our system. Thus, the molecular dynamics calculations are important for this type of system. Our results show the γ-Fe2O3 as a promising alternative to conventional contrast agents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have