Abstract

The long evolution of vascular plants has resulted in a tremendous variety of natural networks responsible for the evaporatively driven transport of water. Nevertheless, little is known about the physical principles that constrain vascular architecture. Inspired by plant leaves, we used microfluidic devices consisting of simple parallel channel networks in a polymeric material layer, permeable to water, to study the mechanisms of and the limits to evaporation-driven flow. We show that the flow rate through our biomimetic leaves increases linearly with channel density (1/d) until the distance between channels (d) is comparable with the thickness of the polymer layer (delta), above which the flow rate saturates. A comparison with the plant vascular networks shows that the same optimization criterion can be used to describe the placement of veins in leaves. These scaling relations for evaporatively driven flow through simple networks reveal basic design principles for the engineering of evaporation-permeation-driven devices, and highlight the role of physical constraints on the biological design of leaves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.