Abstract

Techniques for distributed generations (DGs) have attracted increasing attention due to their effects on environmental sustainability and the reduction in traditional megawatt (MW) generation expansion. Wind farms are one of the DGs and have intermittent characteristics. This paper presents a method for static VAR planning considering existing wind generator voltages and transformer taps as controllers to regulate the voltage profile in a distribution system with wind farms. Wind power generations and bus loads are modeled with the Markov model. The probabilities and durations of the operation states are obtained. Through a quantum evolutionary algorithm, the cost of static VAR compensators and MW loss in the system are minimized and the operational constraints are fulfilled. The applicability of the proposed method is verified through simulations using a standalone 25-bus (Penghu) system and a 17-bus system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.