Abstract

The first optimal—or ‘magic’—angle leading to the nullity of the Dirac/Fermi velocity for twisted bilayer graphene is re-evaluated in the Bistritzer–MacDonald set-up (Bistritzer and MacDonald 2011 Proc. Natl Acad. Sci. 108 12233–7). From the details of that calculation we study the resulting alterations when the properties of the two layers are not exactly the same. A moiré combination of lattices without relative rotation but with different spacing lengths may also lead to a vanishing Dirac velocity. Hopping amplitudes can vary as well, and curvature is one of the possible causes for their change. In the case of small curvature values and situations dominated by hopping energy scales, the optimal angle becomes wider than in the ‘flat’ case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.