Abstract

This article presents an optimal design of a two-degree-of-freedom (2-DoF) controller that will lead to zero asymptotic steady-state tracking error. The reference inputs are chosen from the set of steps, ramps, and other persistent signals used currently. The main idea is to transform the tracking 2-DoF problem into an equivalent state-space feedback-control synthesis one. Where, an internal model of the reference input is introduced. Then, through the linear quadratic regulator (LQR) technique, the desired performance objectives are addressed by minimizing a quadratic cost function. Finally, the computed state-feedback optimal gains are linked to the polynomials used within the 2-DoF formalism. The fundamental aspect of the design is that it only utilizes the measurable information of the plant provided by its inputs and outputs and take advantage of efficient state-space numerical algorithms. The proposed method is applied to a coupled-tank system, the results achieved confirm the effectiveness of the approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call