Abstract

This paper presents a simple methodology for obtaining the entire set of continuous controllers that cause a nonlinear dynamical system to exactly track a given trajectory. The trajectory is provided as a set of algebraic and/or differential equations that may or may not be explicitly dependent on time. Closed-form results are also provided for the real-time optimal control of such systems when the control cost to be minimized is any given weighted norm of the control, and the minimization is done not just of the integral of this norm over a span of time but also at each instant of time. The method provided is inspired by results from analytical dynamics and the close connection between nonlinear control and analytical dynamics is explored. The paper progressively moves from mechanical systems that are described by the second-order differential equations of Newton and/or Lagrange to the first-order equations of Poincaré, and then on to general first-order nonlinear dynamical systems. A numerical example illustrates the methodology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call