Abstract
A new approach to adaptive fuzzy control for uncertain non-linear dynamical systems, is proposed. The considered class of systems can be written in the Brunovsky (canonical) form after a transformation of their state variables and control input. The resulting control signal is shown to consist of non-linear elements, which in case of unknown system parameters can be approximated using neurofuzzy networks. An adaptation law for the neurofuzzy approximators can be computed using Lyapunov stability analysis. It is shown that the proposed adaptation law assures stability of the closed loop. Simulation experiments on benchmark non-linear dynamical systems are used to evaluate the performance of the proposed flatness-based adaptive fuzzy control scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.