Abstract

This paper deals with the optimal topology selection of continuum structures subject to displacement constraints by using the performance-based design concept. The optimal topology of a continuum structure is generated by gradually eliminating underutilized elements from the discretized design domain. A performance index is developed for monitoring the optimization process and is used as a termination criterion in the optimization algorithm so that the global optimum can be selected from the optimization history. Maximizing the performance index in the design space is proposed as the performance-based optimization criterion. The performance index can be utilized to compare the efficiency of structural topologies produced by different continuum topology optimization methods. Several examples are provided to demonstrate the capabilities of the performance-based optimization approach in selecting the best configuration for the minimum-weight design of continuum structures with maximum stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.