Abstract

histogram which can be modeled as a mixture of two Gaussian density functions, estimating these densities inpractice is not simply feasible. The objective of this paper is to use adaptive particle swarm optimization (APSO) forthe suboptimal estimation of the means and variances of these two Gaussian density functions; then, the computationof the optimal threshold value is straightforward. The comparisons of experimental results in a wide range of complexbimodal images show that this proposed thresholding algorithm presents higher correct detection rate of object andbackground in comparison to the other methods including Otsu’s method and estimating the parameters of Gaussiandensity functions using genetic algorithm (GA). Meanwhile, the proposed thresholding method needs lower executiontime than the PSO-based method, while it shows a little higher correct detection rate of object and background, withlower false acceptance rate and false rejection rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.