Abstract

Effective cooling is very important issue in a light emitting diode (LED) module because its performance and reliability decrease significantly as the junction temperature increases. This study proposes a cooling method that improves upon the poor ventilation and heat dissipation of a horizontal fin heat sink mounted on an LED module with natural convection. Response surface methodology (RSM) was used to optimize the geometry of the horizontal fin heat sink with the modified openings, and the cooling performance of the proposed model was compared against those of conventional fin heat sinks. The total thermal resistance of the proposed model is decreased by 30.5% relative to that of the conventional no-opening model at an orientation of 180° and a heat input of 10 W. In addition, the luminous efficacy of the proposed model is increased by 23.7% relative to that of the conventional no-opening model at an orientation of 180° and a heat input of 25 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call