Abstract

Software reliability is one of the most important quality attributes of commercial software. During software testing, software reliability growth models (SRGMs) are commonly used to describe the phenomenon of failure occurrence and/or fault removal which consequently enhancements software reliability. Large software systems are developed by integrating a number of relatively small and independent modules, which are tested independently during module testing phase. The amount of testing resource available is limited which is desired to be consumed judiciously so as to optimize the testing process. In this paper we formulate a resource allocation problem of minimizing the cost of software testing under available amount of testing resource, given a reliability constraint. We use a flexible SRGM considering testing effort which, depending upon the values of parameters, can describe either exponential or S-shaped failure pattern of software modules. A systematic and sequential Algorithm is proposed to solve the optimization problem formulated. Numerical examples are given to illustrate the formulation and solution procedures. Sensitivity analysis is performed to examine the behavior of some parameters of SRGM with most significant influence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.