Abstract
In the clinic, a major problem in train of four (TOF) muscle relaxation monitoring is incorrect placement of stimulation and recording electrodes, frequently resulting in incorrect estimates of the patient's degree of relaxation or in abandonment of relaxation monitoring. The aim of this study was to arrive at recommendations that describe how to find optimal positions for the electrodes, where 'optimal' is taken in the sense that small deviations from these positions introduce no or only a small decline in the accuracy of the computed degree of muscle relaxation. This study, which employed the Relaxograph as the stimulation and measuring device, established that incorrect positioning is a real problem that frequently occurs; that the correctness of positioning is not guaranteed when the calibration of the Relaxograph succeeds; that the inadequacy of the electrode position is sometimes discovered for the first time when relaxation deepens; that positioning errors can be discovered by analysing the shape of the evoked compound action potential (ECAP), not only upon calibration but also when relaxation deepens; that a set of optimal electrode positions can be found; and that recommendations of how to find these optimal positions could help clinicians to place the electrodes in such a way, that reliable relaxation monitoring was possible in 100% of the investigated cases. In a first test in 30 adult patients, we surveyed how clinicians routinely positioned electrodes and found that in 14 of the 30 cases positioning was unsuccessful. In a second test in 10 patients, we tested a variety of electrode positions in order to discover 'optimal' stimulation, recording and ground electrode sites. In a third test in 10 patients, electrodes were positioned at these 'optimal' sites; stimulation and recording at these sites was successful in all 10 cases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have