Abstract

We consider a controlled mechanical system of many bodies, consisting of a load-bearing disk that rotates around its axis fixed in space, and a carried disk attached to it using weightless elastic elements. The presented bodies are in the same plane. The problem of minimizing the amplitude of radial oscillations is studied. To solve this problem over a sufficiently large interval, two numerical methods are used: the method of successive approximations in the control space and Newton’s method. The properties of the phase trajectories of the system are studied depending on the initial states of the disks. Various disk spin-up modes are detected. Using the smoothing procedure for optimal control, a continuous control is constructed that reduces the amplitude of radial oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.