Abstract
Crop straw retention in the rice-based rotation cropland has been widely accepted as an effective method to improve soil quality in China. Rice–wheat rotation cropland is one the most prevalent rice-based rotation patterns, where it only exploits a small proportion of the total agricultural land yet feeds the majority of the Chinese population. Previous studies indicated that the incorporation of fore-rotating crop straw can effectively facilitate soil carbon sequestration in rice paddy fields. However, the application of crop straw may increase methane (CH4) emissions from rice paddies due to the anaerobic soil condition. To mitigate CH4 emissions from rice paddies while still preserving their soil carbon sequestration ability, a field experiment was conducted in the 2012–2016 rice growing seasons to determine the optimal low-carbon crop straw retention strategy. Five treatments with different wheat straw retention strategies were employed in this study, including non-fertilization and non-straw (Control), conventional fertilization without straw incorporation (CF), conventional fertilization with wheat straw incorporation (FS), slow-release fertilizer combined with wheat straw (SFS), and conventional fertilization with wheat-straw-derived biochar (FB). The results indicated that FS, SFS, and FB treatments significantly increased soil carbon sequestration in comparison with CF treatment. However, the increment of soil carbon sequestration was offset by raw wheat straw induced excess CH4 emissions under FS and SFS treatments. In contrast, the application of wheat-straw-derived biochar significantly promoted soil carbon sequestration, but showed no significant effect on CH4 emissions. Collectively, to the farmers, who aim to achieve agricultural carbon neutrality, the application of straw-derived biochar is worthy of consideration in rice cultivation processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have