Abstract

The design of metabolic pathways is thought to be the result of an optimization process such that the structure of contemporary metabolic routes maximizes a particular objective function. Recently, it has been shown that some essential stoichiometric properties of glycolysis can be explained on the basis of the requirement for a high ATP production rate. Because the number of stoichiometrically feasible designs increases strongly with the number of reactions involved, a systematic analysis of all the possibilities turns out to be inaccessible beyond a certain system size. We present, therefore, an alternative approach to compute in a more efficient way the optimal design of glycolysis interacting with an external ATP-consuming reaction. The algorithm is based on the laws of evolution by natural selection, and may be viewed as a particular version of evolutionary algorithms. The following conclusions are derived: (a) evolutionary algorithms are very useful search strategies in determining optimal stoichiometries of metabolic pathways. (b) Essential topological features of the glycolytic network may be explained on the basis of flux optimization. (c) There is a strong interrelation between the optimal stoichiometries and the thermodynamic and kinetic properties of the participating reactions. (d) Some subsequences of reactions in optimal pathways are strongly conserved at variation of system parameters, which may be understood by applying principles of metabolic control analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call