Abstract
Tree search and its more complicated variant, tree search and simultaneous multiple DNA sequence alignment, are difficult NP-complete optimization problems, which require the application of advanced computational techniques, if large data sets are to be solved within reasonable computation times. Traditionally tree search has been attacked with a search strategy that is best described as multistart hill-climbing; local search by branch swapping has been performed on several different starting trees. Recently a different tree search strategy was tested in the Parsigal parsimony program, which used a combination of evolutionary optimization and local search. Evolutionary optimization algorithms use principles adopted from biological evolution to solve technical optimization tasks. Evolutionary optimization is a stochastic global search method, which means that the method is able to escape local optima, and is in principle able to produce any solution in the search space (although this may take a long time). Local search techniques, such as branch swapping, employ a completely different search strategy; they exploit local information maximally in order to achieve quick improvement in the value of the objective function. However, local search algorithms lack the ability to escape from local optima, which is a fundamental requirement for any search algorithm that aims to be able to discover the global optimum of a multimodal optimization problem. Hence it seems that an optimization strategy combining the good properties of both evolutionary algorithms and local search would be ideal. In this study, aspects of global optimization and local search are discussed, and the method of simulated evolutionary optimization is reviewed in detail. The application of simulated evolutionary optimization to tree search in Parsigal is then reviewed briefly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.