Abstract

In this paper, bilateral contracting and selling price determination problems for an electricity retailer in the smart grid environment under uncertainties have been considered. Multiple energy procurement sources containing pool market (PM), bilateral contracts (BCs), distributed generation (DG) units, renewable energy sources (photovoltaic (PV) system and wind turbine (WT)) and energy storage system (ESS) as well as demand response program (DRP) as virtual generation unit are considered. The scenario-based stochastic framework is used for uncertainty modeling of pool market prices, client group demand and variable climate condition containing temperature, irradiation and wind speed. In the proposed model, the selling price is determined and compared by the retailer in the smart grid in three cases containing fixed pricing, time-of-use (TOU) pricing and real-time pricing (RTP). It is shown that the selling price determination based on RTP by the retailer leads to higher expected profit. Furthermore, demand response program (DRP) has been implemented to flatten the load profile to minimize the cost for end-user customers as well as increasing the retailer profit. To validate the proposed model, three case studies are used and the results are compared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call