Abstract
Vibrational optical coherence elastography (OCE) is a promising tool for extracting the mechanical property of soft tissue. Purpose of this study is focusing on settling the optimal frequency range for vibrational OCE with evenly distributed stress filed. A finite element model of 2% agar phantom was built by ANSYS with a vibration stimulation frequency range from 200 to 3000 Hz. Practical experiments were carried out for cross-validation with the same frequencies and sample. Lateral and horizontal stress filed distributions under different frequencies were mathematically evaluated by coefficient of variance and degree of linearity. Results from simulation and practical experiment cross-validated each other and 1000 Hz was set as the maximum ideal frequency for vibrational OCE, while the minimum frequency is set by theoretical calculation with a result of 250 Hz. An ex vivo biological sample was utilised to testify performance of vibrational OCE with excitation frequencies in and out of concluded optimal range, which showed that stiffness was better mapped out in optimal frequency range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.