Abstract

The accuracy of target passive localization is influenced by the placement of signal receiving stations; therefore, many studies have been performed to optimize station placement. However, most of the present placement methods focus on the localization error of one target, and if the exact position of the target cannot be determined, but only the range of the target activity is known, how to study the localization station placement in a region is a problem that needs to be solved. This paper proposes a grey wolf optimization algorithm based on the regional target error model to solve the optimal station placement problem. Firstly, a regional target localization error model is established using the measured TDOA, and the overall error matrix within a region is derived. Then, by taking the trace of the error matrix as a criterion, the objective function is established to find the optimal location of the receiving station by grey wolf optimizer. The optimization parameters are also improved to increase the global search ability of the algorithm. Finally, the feasibility and reliability of the overall error model and the grey wolf algorithm proposed are verified by experiments from multiple perspectives. The station placement method proposed in this paper can effectively solve the localization problem of targets that are only known to be in a general activity region in advance, which is more realistic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.