Abstract
Localization is crucial to wireless sensor networks. Among the recently proposed localization algorithms, the mobile anchor-assisted localization (MAL) algorithm seems promising. A MAL algorithm using a single mobile anchor has low energy consumption but a high localization error. Conversely, a MAL algorithm with three or more mobile anchors has minor localization errors but high energy consumption. By balancing energy consumption and localization accuracy, our study developed a localization algorithm assisted by two mobile anchors. A mobile anchor traverses the network along a double anchor SCAN (DASCAN) path, which divides the deployment region into grids and requires the two mobile anchors to traverse different horizontal lines in a zigzag pattern. Sensor nodes estimate their locations using a multiple-disturbance strategy grey wolf optimization (MDS-GWO) algorithm, which improves optimization by introducing a nonlinearly decreasing weight, a random perturbation of grey wolves and a mirror grey wolf. Using MATLAB, DASCAN was compared with GTURN, GSCAN, PP-MMAN, H-Curves, M-Curves, and SCAN paths by their energy consumption and localization rates. The localization error of MDS-GWO was compared with trilateration, PSO, WOA, and GWO. The impacts of radio irregularity, radio radius, and fading effect on MDS-GWO with different paths were also analyzed. The simulation results showed that the energy consumption of DASCAN was, on average, 30.1% less than GSCAN, GTURN, and PP-MMAN, but they had almost the same localization accuracy. The energy consumption of DASCAN was an average of 18.67% more than M-Curves, H-Curves, and SCAN, but the localization error of DASCAN was average of 32.3% less than SCAN, H-Curves, and M-Curves. The localization error of MDS-GWO was average of 25.5% less than trilateration, PSO, WOA, and GWO. Moreover, the performance of the proposed algorithm was less affected by different setups than the compared methods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.