Abstract

Event detection is usually the primary purpose of wireless sensor networks (WSNs). Therefore, it is crucial to determine where and when an event occurs in order to map the event to its spatio-temporal domain. In WSN localization, a few anchor nodes are those aware of their locations via the Global Positioning System (GPS), which is energy-consuming. Non-anchor nodes self-localize by gathering information from anchor nodes to estimate their positions using a localization technique. Traditional algorithms use at least three static anchors for the localization process. Recently, researchers opted to replace multiple static anchors by a single mobile anchor during the localization process. This paper proposes a Kalman filter based on bounding box localization algorithm (KF-BBLA) in WSNs with mobile anchor node. We present a new mobile anchor localization strategy to minimize energy, hardware costs, and computation complexity, while improving accuracy and cost-effectiveness. Network connectivity measurement and the bounding box localization method are used in order to identify the bounded possible localization zone. The Kalman filter is then used to minimize the uncertainty produced by the connectivity process. We aim also to minimize the localization inaccuracies generated by the bounding box algorithm. Simulation results show that our proposed approach significantly reduces the localization error compared to other localization algorithms chosen from the recent literature by up to 20%. We use the cumulative distribution function (CDF) as an indicator to assess the accuracy of our proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call