Abstract
The problem of optimal simultaneous regional pole placement for a collection of linear time-invariant systems via a single static output feedback controller is considered. The cost function to be minimized is a weighted sum of quadratic performance indices of the systems. The constrained region for each system can be the intersection of several open half-planes and/or open disks. This problem cannot be solved by the linear matrix inequality (LMI) approach since it is a nonconvex optimization problem. Based on the barrier method, we instead solve an auxiliary minimization problem to obtain an approximate solution to the original constrained optimization problem. Moreover, solution algorithms are provided for finding the optimal solution. Furthermore, a necessary and sufficient condition for the existence of admissible solutions to the simultaneous regional pole placement problem is derived. Finally, two examples are given for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.