Abstract
Motivated by DNA copy number variation (CNV) analysis based on high-density single nucleotide polymorphism (SNP) data, we consider the problem of detecting and identifying sparse short segments in a long one-dimensional sequence of data with additive Gaussian white noise, where the number, length, and location of the segments are unknown. We present a statistical characterization of the identifiable region of a segment where it is possible to reliably separate the segment from noise. An efficient likelihood ratio selection (LRS) procedure for identifying the segments is developed, and the asymptotic optimality of this method is presented in the sense that the LRS can separate the signal segments from the noise as long as the signal segments are in the identifiable regions. The proposed method is demonstrated with simulations and analysis of a real dataset on identification of copy number variants based on high-density SNP data. The results show that the LRS procedure can yield greater gain in power for detecting the true segments than some standard signal identification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.