Abstract
We consider optimal investment problems for a diffusion market model with non-observable random drifts that evolve as an Ito's process. Admissible strategies do not use direct observations of the market parameters, but rather use historical stock prices. For a non-linear problem with a general performance criterion, the optimal portfolio strategy is expressed via the solution of a scalar minimization problem and a linear parabolic equation with coefficients generated by the Kalman filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.