Abstract

An optimal strategy based on minimum control effort with terminal position and velocity constraints is developed for an exoatmospheric interceptor in order to generate effective intercept for fixed-interval propulsive maneuvers. It is then integrated with sliding-mode control theory to derive a robust optimal guidance law. In addition, this guidance law is generalized for intercepting an arbitrarily time-varying target maneuver. The new guidance method's robustness against disturbances and good miss distance performance are proved by the second method of Lyapunov and simulation results. The presented guidance law is simple to implement in practical applications and requires less acceleration command in comparison to optimal guidance law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.