Abstract

Sliced Latin hypercube designs (SLHDs) have important applications in designing computer experiments with continuous and categorical factors. However, a randomly generated SLHD can be poor in terms of space-filling, and based on the existing construction method that generates the SLHD column by column using sliced permutation matrices, it is also difficult to search for the optimal SLHD. In this article, we develop a new construction approach that first generates the small Latin hypercube design in each slice and then arranges them together to form the SLHD. The new approach is intuitive and can be easily adapted to generate orthogonal SLHDs and orthogonal array-based SLHDs. More importantly, it enables us to develop general algorithms that can search for the optimal SLHD efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.