Abstract
The rapid growth of EVs relies on the development of supporting infrastructure, e.g., charging stations (CSs). The sizing problem of a CS typically involves minimizing the investment costs. Therefore, a flexible and precise sizing strategy is crucial. However, the existing methods suffer from the following issues: (1) they do not consider charging station deployments based on the charging stack; (2) existing sizing strategies based on smart charging technology consider a single scenario and fail to meet the demand for flexible operation under multiple scenarios in real-life situations. This paper proposes a novel CS sizing framework specific for charging stacks to overcome these challenges. Specifically, it first addresses the charging-stack-based CS sizing problem, and then it proposes the corresponding multiscenario constraints, i.e., exclusive and shared, for capacity-setting optimization. In addition, a novel quality of service (QoS) formulation is also proposed to better relate the user QoS levels to the CS sizing problem. Finally, it also explores the relationship between the investment costs and the total power of the needed charging stack under three business models. Extensive experiments show that the proposed framework can offer valuable guidance to CS operators in competitive environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have