Abstract
This article focuses on the application of a latest nature-inspired metaheuristic optimization algorithm named Grasshopper Optimization Algorithm (GOA) in the area of microgrid system sizing design problem. The proposed algorithm is applied to an autonomous microgrid system in order to determine the optimal system configuration that will supply energy demand reliably based on the deficiency of power supply probability (DPSP) and cost of energy (COE). Firstly, a robust rule-based energy management scheme (EMS) is proposed to coordinate the power flow among the various system components that formed the microgrid. Then, the GOA is integrated with the EMS to perform the optimal sizing for the hybrid autonomous microgrid for five units of residential in an off-grid location in Yobe State, Nigeria. The proposed microgrid comprises of photovoltaic modules, wind turbine, battery storage system and a diesel generator. The effectiveness of the proposed GOA in solving the optimization problem is examined and its performance is compared with particle swarm optimization (PSO) and cuckoo search (CS) optimization algorithm. In addition, a sensitivity analysis is performed on the COE to highlight the impact of varying sensitive system inputs. The proposed optimization is programmed using MATLAB simulation package. The simulation results confirm that GOA is able to optimally size the system as compared to its counterparts, CS and PSO. In which, a decrement of 14% and 19.3% is achieved in the system capital cost, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.