Abstract

Increases in the energy costs of irrigation water pumping facilities puts the economic sustainability of recent investments in the modernization of farms at risk. To address this problem, it is essential to apply renewable technologies for the production of electricity, and photovoltaic energy is particularly attractive due to its lower cost and recent technological advances. The aim of this research is to develop a mathematical techno-economic dispatch model that optimizes the hourly schedule of pumping equipment subject to electrical and hydraulic constraints to minimize the weekly operating costs of a real pumping station. The resulting model is formulated as a mixed-integer nonlinear programming problem that determines the optimal hourly combination of pumping equipment and available resources to meet water and energy needs. The proposed model comprises fixed and variable speed pumps, a grid-connected photovoltaic plant, and two water ponds for internal regulation and storage. The results verify that the combination of self-consumption photovoltaic facilities and variable speed drives make it possible to maximize the percentage of self-consumed energy up to 99.41% during the month with the highest demand for water. In this case, the pumping station reduces its energy costs by 21.56%, in addition to improving water management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call