Abstract
This paper proposed a user-friendly and adaptive home intelligent agent with self-learning capability for optimal scheduling of smart home energy systems. The intelligent agent autonomously identifies model parameters based on system operation data, eliminating the need for manual input and making it more user-friendly and practical to implement. It can also self-learn the latest energy consumption information from an updated dataset and adaptively adjust model parameters to accommodate changing conditions. Utilizing these determined models as input, the intelligent agent performs day-ahead optimal scheduling using the proposed many-objective integer nonlinear optimization model and automatically controls system operation. Experimental studies were conducted on a laboratory-based smart home energy system to verify the effectiveness of the developed intelligent agent in different scenarios. The results consistently demonstrate Mean Absolute Percentage Errors below -12.7 % across all three scenarios, indicating the accuracy of the intelligent agent. Furthermore, the optimal scheduling significantly enhances system performances. After optimization, daily operational costs, peak-valley differences, and CO2 emissions were reduced by 34.1 % to 81.6 %, 29.2 % to 36.7 %, and 19.6 % to 43.2 %, respectively. Moreover, the PV generation self-consumption rate and self-sufficiency rate improved by 29.6 % to 38.0 % and 40.5 % to 49.4 %, respectively. The proposed intelligent agent provides invaluable guidance for optimal dispatch of smart home energy systems in real-world settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.